AP Calculus – Final Review Sheet

When you see the words	This is what you think of doing
1. Find the zeros	Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator
2. Find equation of the line tangent to $f(x)$ on $[a,b]$	Take derivative - $f'(a) = m$ and use $y - y_1 = m(x - x_1)$
3. Find equation of the line normal to $f(x)$ on $[a,b]$	Same as above but $m = \frac{-1}{f'(a)}$ Show that $f(-x) = f(x)$ - symmetric to y-axis
4. Show that $f(x)$ is even	Show that $f(-x) = f(x)$ - symmetric to y-axis
5. Show that $f(x)$ is odd	Show that $f(-x) = -f(x)$ - symmetric to origin
6. Find the interval where $f(x)$ is increasing	Find $f'(x)$, set both numerator and denominator to zero to find critical points, make sign chart of $f'(x)$ and determine where it is positive.
7. Find interval where the slope of $f(x)$ is increasing	Find the derivative of $f'(x) = f''(x)$, set both numerator and denominator to zero to find critical points, make sign chart of $f''(x)$ and determine where it is positive.
8. Find the minimum value of a function	Make a sign chart of $f'(x)$, find all relative minimums and plug those values back into $f(x)$ and choose the smallest.
9. Find the minimum slope of a function	Make a sign chart of the derivative of $f'(x) = f''(x)$, find all relative minimums and plug those values back into $f'(x)$ and choose the smallest.
10. Find critical values	Express $f'(x)$ as a fraction and set both numerator and denominator equal to zero.
11. Find inflection points	Express $f''(x)$ as a fraction and set both numerator and denominator equal to zero. Make sign chart of f''(x) to find where $f''(x)$ changes sign. (+ to - or - to +)
12. Show that $\lim_{x \to a} f(x)$ exists	Show that $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$
13. Show that $f(x)$ is continuous	Show that 1) $\lim_{x \to a} f(x)$ exists $(\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x))$ 2) $f(a)$ exists 3) $\lim_{x \to a} f(x) = f(a)$
14. Find vertical asymptotes of $f(x)$	Do all factor/cancel of $f(x)$ and set denominator = 0
15. Find horizontal asymptotes of $f(x)$	Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$
16. Find the average rate of change of $f(x)$ on $[a,b]$	Find $\frac{f(b) - f(a)}{b - a}$ Find $f'(a)$
17. Find instantaneous rate of change of $f(x)$ at <i>a</i>	Find $f'(a)$

18. Find the average value of $f(x)$ on $[a,b]$	Find $\frac{\int_{a}^{b} f(x) dx}{b - a}$
	Find $\frac{a}{b-a}$
19. Find the absolute maximum of $f(x)$ on $[a,b]$	Make a sign chart of $f'(x)$, find all relative
	maximums and plug those values back into $f(x)$ as
	well as finding $f(a)$ and $f(b)$ and choose the largest.
20. Show that a piecewise function is differentiable	First, be sure that the function is continuous at $x = a$.
at the point <i>a</i> where the function rule splits	Take the derivative of each piece and show that $\frac{1}{10000000000000000000000000000000000$
	$\lim_{x \to a^-} f'(x) = \lim_{x \to a^+} f'(x)$
21. Given $s(t)$ (position function), find $v(t)$	Find $v(t) = s'(t)$
22. Given $v(t)$, find how far a particle travels on $[a,b]$	Find $\int_{a}^{b} v(t) dt$
23. Find the average velocity of a particle on $[a,b]$	$\int_{a}^{b} f(t) dt$
	Find $\frac{\int_{a}^{b} v(t) dt}{b-a} = \frac{s(b)-s(a)}{b-a}$
24. Given $v(t)$, determine if a particle is speeding up	Find $v(k)$ and $a(k)$. Multiply their signs. If both
at $t = k$	positive, the particle is speeding up, if different signs,
25. Given $v(t)$ and $s(0)$, find $s(t)$	then the particle is slowing down. $s(t) = \int v(t) dt + C$ Plug in $t = 0$ to find C
26. Show that Rolle's Theorem holds on $[a,b]$	Show that <i>f</i> is continuous and differentiable on the
20. Show that Kohe 3 Theorem holds on $[a, b]$	interval. If $f(a) = f(b)$, then find some c in $[a, b]$
	such that $f'(c) = 0$.
27. Show that Mean Value Theorem holds on $[a,b]$	Show that f is continuous and differentiable on the
	interval. Then find some <i>c</i> such that
	$f'(c) = \frac{f(b) - f(a)}{b - a}.$
	<i>v</i> – <i>u</i>
28. Find domain of $f(x)$	Assume domain is $(-\infty,\infty)$. Restrictable domains:
	denominators $\neq 0$, square roots of only non negative
29. Find range of $f(x)$ on $[a,b]$	numbers, log or ln of only positive numbers. Use max/min techniques to rind relative max/mins.
27.1 merange or f(x) on [a, b]	Then examine $f(a), f(b)$
30. Find range of $f(x)$ on $(-\infty,\infty)$	Use max/min techniques to rind relative max/mins.
	Then examine $\lim_{x \to \pm\infty} f(x)$.
31. Find $f'(x)$ by definition	f(x+h) - f(x)
	$\int f'(x) = \lim_{h \to 0} \frac{f'(x+h) - f(x)}{h}$ or
	$\int \int \frac{d^{\prime\prime}}{f(x)-f(a)}$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ or}$ $f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$
32. Find derivative of inverse to $f(x)$ at $x = a$	Interchange x with y. Solve for $\frac{dy}{dx}$ implicitly (in terms
	of y). Plug your x value into the inverse relation and
	solve for y. Finally, plug that y into your $\frac{dy}{dx}$.
	dx

33. y is increasing proportionally to y	$\frac{dy}{dt} = ky$ translating to $y = Ce^{kt}$
34. Find the line $x = c$ that divides the area under $f(x)$ on $[a,b]$ to two equal areas	$\int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx$
$35. \frac{d}{dx} \int_{a}^{x} f(t) dt =$	2^{nd} FTC: Answer is $f(x)$
$36. \frac{d}{dx} \int_{a}^{u} f(t) dt$	2 nd FTC: Answer is $f(u)\frac{du}{dx}$
37. The rate of change of population is	$\frac{dP}{dt} = \dots$
38. The line $y = mx + b$ is tangent to $f(x)$ at (x_1, y_1)	Two relationships are true. The two functions share the same slope ($m = f'(x)$) and share the same y value at x_1 .
39. Find area using left Riemann sums	$A = base[x_0 + x_1 + x_2 + \dots + x_{n-1}]$
40. Find area using right Riemann sums	$A = base[x_1 + x_2 + x_3 + + x_n]$
41. Find area using midpoint rectangles	Typically done with a table of values. Be sure to use only values that are given. If you are given 6 sets of points, you can only do 3 midpoint rectangles.
42. Find area using trapezoids	$A = \frac{base}{2} [x_0 + 2x_1 + 2x_2 + + 2x_{n-1} + x_n]$ This formula only works when the base is the same. If not, you have to do individual trapezoids.
43. Solve the differential equation	Separate the variables $-x$ on one side, y on the other. The dx and dy must all be upstairs.
44. Meaning of $\int_{a}^{x} f(t) dt$	The accumulation function – accumulated area under the function $f(x)$ starting at some constant <i>a</i> and ending at <i>x</i> .
45. Given a base, cross sections perpendicular to the <i>x</i> -axis are squares	The area between the curves typically is the base of your square. So the volume is $\int_{a}^{b} (base^2) dx$
46. Find where the tangent line to $f(x)$ is horizontal	Write $f'(x)$ as a fraction. Set the numerator equal to zero.
47. Find where the tangent line to $f(x)$ is vertical	Write $f'(x)$ as a fraction. Set the denominator equal to zero.
48. Find the minimum acceleration given $v(t)$	First find the acceleration $a(t) = v'(t)$. Then minimize the acceleration by examining $a'(t)$.
49. Approximate the value of $f(0.1)$ by using the tangent line to f at $x = 0$	Find the equation of the tangent line to f using $y - y_1 = m(x - x_1)$ where $m = f'(0)$ and the point is $(0, f(0))$. Then plug in 0.1 into this line being sure to use an approximate (\approx)sign.

50. Given the value of $F(a)$ and the fact that the anti- derivative of f is F , find $F(b)$ 1	Usually, this problem contains an antiderivative you cannot take. Utilize the fact that if $F(x)$ is the antiderivative of <i>f</i> , then $\int_{a}^{b} F(x) dx = F(b) - F(a)$. So solve for $F(b)$ using the calculator to find the definite integral.
51. Find the derivative of $f(g(x))$	$f'(g(x)) \cdot g'(x)$
52. Given $\int_{a}^{b} f(x) dx$, find $\int_{a}^{b} [f(x) + k] dx$	$\int_{a}^{b} [f(x)+k] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} k dx$ Make a sign chart of $f'(x)$ and determine where
53. Given a picture of $f'(x)$, find where $f(x)$ is increasing	Make a sign chart of $f'(x)$ and determine where $f'(x)$ is positive.
54. Given $v(t)$ and $s(0)$, find the greatest distance from the origin of a particle on $[a,b]$	Generate a sign chart of $v(t)$ to find turning points. Then integrate $v(t)$ using $s(0)$ to find the constant to find $s(t)$. Finally, find $s($ all turning points) which will give you the distance from your starting point. Adjust for the origin.
55. Given a water tank with g gallons initially being filled at the rate of $F(t)$ gallons/min and emptied at the rate of $E(t)$ gallons/min on $[t_1, t_2]$, find a) the amount of water in the tank at m minutes	$g + \int_{t}^{t_2} (F(t) - E(t)) dt$
56. b) the rate the water amount is changing at <i>m</i>	$\frac{d}{dt}\int_{t}^{m} (F(t) - E(t))dt = F(m) - E(m)$
57. c) the time when the water is at a minimum	F(m) - E(m) = 0, testing the endpoints as well.
58. Given a chart of x and $f(x)$ on selected values between a and b, estimate $f'(c)$ where c is between a and b.	Straddle c, using a value k greater than c and a value h less than c. so $f'(c) \approx \frac{f(k) - f(h)}{k - h}$
59. Given $\frac{dy}{dx}$, draw a slope field	Use the given points and plug them into $\frac{dy}{dx}$, drawing little lines with the indicated slopes at the points.
60. Find the area between curves $f(x), g(x)$ on $[a, b]$	$A = \int_{a}^{b} \left[f(x) - g(x) \right] dx$, assuming that the <i>f</i> curve is above the <i>g</i> curve.
61. Find the volume if the area between $f(x)g(x)$ is rotated about the <i>x</i> -axis	$A = \int_{a}^{b} \left[(f(x))^{2} - (g(x))^{2} \right] dx$ assuming that the <i>f</i> curve is above the <i>g</i> curve.